طبقه بندی دودویی با استفاده از شبکه های عصبی مصنوعی

thesis
abstract

یکی از علوم جدیدی که توجه ویژه به آن شده است علم داد‏ه کاوی است. این علم بانک های اطلاعاتی و مجموعه های حجیم داده ها را مورد بررسی قرار می دهد. هدف داده کاوی کشف، استخراج دانش و تحلیل داده ها است. یکی از شاخه های علم داده کاوی، طبقه بندی می باشد. هدف طبقه بندی افراز مجموعه ی داده ها به طبقه هایی است که داده های هر طبقه دارای ویژگی های خاص و مشترکی هستند. با توجه به حجیم بودن داده ها و این که ممکن است داده ها چند بعدی باشند طبقه بندی کار ساده ای نیست. به همین دلیل از روابط ریاضی و علم هوش مصنوعی نیز برای طبقه بندی استفاده می کنیم.در این پژوهش توجه خود را به رده خاصی از طبقه بندی به نام طبقه بندی دودویی معطوف می نماییم. طبقه بندی دودویی نوعی طبقه بندی است که در آن داده ها به دو دسته تقسیم بندی می شوند. در همه انواع طبقه بندی های دودویی معمولا از یک تابع حقیقی که برد آن مجموعه {0و1} است برای یادگیری طبقه بندی استفاده می شود. سپس این تابع برای نمونه های جدید بکار برده می شود و مقدار آنها نشان می دهد که چه نمونه ای در چه طبقه ای جای گیرد.دیگر الگوریتم برای حل مساله طبقه بندی، تحلیل پوششی داد‏ه ها‎ (dea) ‎ است. تحلیل پوششی داده‎‏ ها که توسط چارنز و دیگران توسعه داده شده است یک روش غیر پارامتری برای تشخیص کارایی گروهی از واحدهای تصمیم گیرنده ‎ (dmu) ‎ است. هر واحدهای تصمیم گیرنده از چندین ورودی برای تولید تعدادی خروجی استفاده می کند. تحلیل پوششی داده ها واحدهای تصمیم گیرنده را به دو گروه واحد تصمیم گیرنده کارا و واحد تصمیم گیرنده ناکارا تقسیم بندی می کند. بنابراین می توان از آن برای حل مساله طبقه بندی دودویی استفاده کرد. مدل های ‎ bcc ‎ و ‎ ccr ‎ در تحلیل پوششی داده ها برای حل مساله طبقه بندی دودویی معرفی شده اند. برای حل مساله با این مدل ها واحدهای تصمیم گیرنده باید دارای خاصیت یکنوایی و ورودی ها نامنفی باشند. اما بسیاری از مسایل طبقه بندی دارای داده های منفی هستند و یا داده ها در خاصیت یکنوایی صدق نمی کنند. در این حالت، dea به تنهایی قادر به حل مساله طبقه بندی نیست. برای رفع این اشکالات از توابع پایه شعاعی استفاده می شو‏د.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

طبقه بندی نظارت شده جوامع گیاهی شمشاد هیرکانی با استفاده از شبکه عصبی مصنوعی

در این پژوهش، کاربرد روش شبکه عصبی مصنوعی یا MLP در فرآیند تخصیص رلوه- گروه‌ها/جوامع‌گیاهی با استفاده از پایگاه اطلاعاتی ترکیب‌گیاهی جنگل‌های شمشاد هیرکانی (Buxus hyrcana Pojark.) ارزیابی شد. برای این منظور، نخست گروه‌های بوم‌شناختی و جامعه‌شناختی شمشاد هیرکانی به ترتیب با استفاده از نتایج دو روش عددی TWINSPAN و تجربی براون-بلانکه تعیین شد. نتایج هر دو دارنگاره عددی و تجربی طبقه‌بندی مشتمل بر 7...

full text

برآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال

امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاک­ها ایفا می­کند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمان­بر است و هم اطلاعات چندان دقیقی را به دست نمی­دهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روش­ها ارجحیت داده می­شود. در این تحقیق سعی بر آن شد با استفاده از تکنیک­های سنجش از د...

full text

درجه بندی زعفران بر اساس ویژگی های ظاهری با استفاده از شبکه های عصبی مصنوعی

زعفران به‌عنوان یک کالای تجاری مهم در کشور به­شمار می‌آید و توجه به مکانیزه کردن آن از مرحله تولید تا بسته‌بندی اهمیت زیادی دارد. در بدو ورود زعفران به فرایند کیفی سنجی در آزمایشگاه ، ارزیابی اولیه بر اساس مشخصات ظاهری زعفران توسط شخص خبره انجام می‌شود. لیکن بروز خطای انسانی در تشخیص کیفیت زعفران بر مبنای ویژگی‌های ظاهری آن امری اجتناب‌‌ناپذیر‌ است؛ استفاده از تکنیک‌های مبتنی بر هوش مصنوعی می‌ت...

full text

افزایش نرخ کارایی طبقه بندی با استفاده از تجمیع ویژگی های موثر روش های مختلف ترکیب شبکه های عصبی

Both theoretical and experimental studies have shown that combining accurate Neural Networks (NN) in the ensemble with negative error correlation greatly improves their generalization abilities. Negative Correlation Learning (NCL) and Mixture of Experts (ME), two popular combining methods, each employ different special error functions for the simultaneous training of NN experts to produce negat...

full text

شبیه سازی و طبقه بندی وقایع کیفیت توان با استفاده از شبکه عصبی

امروزه استفاده ی روز افزون از تجهیزات الکترونیکی و بارهای غیر خطی در سیستم قدرت، مسئله کیفیت توان را به یک موضوع مهم تبدیل کرده است. در این مقاله برای شبیه سازی وقایع کیفیت توان به طور همزمان از دو روش مدل سازی ریاضی و داده های حاصل از شبیه سازی با نرم افزار Pscad استفاده شده است. با توجه به عملکرد بسیار خوب شبکه های عصبی در کارهای تشخیص الگو و طبقه بندی، شبکه عصبی چند لایه برای طبقه بندی وقایع...

full text

برآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال

امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاک­ها ایفا می­کند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمان­بر است و هم اطلاعات چندان دقیقی را به دست نمی­دهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روش­ها ارجحیت داده می­شود. در این تحقیق سعی بر آن شد با استفاده از تکنیک­های سنجش از د...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده علوم پایه دامغان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023